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Abstract 

Exact reflectivity curves are calculated numerically for 
various periodic multilayers using the optical matrix 
method in order to test the dynamical theory of 
diffraction. The theory is generally valid for values of 
the bilayer thickness d up to about 100 A. For somewhat 
larger values of d, where the theory begins to break 
down, the initial discrepancy is in the phase of the 
oscillations in the wings of the peaks. For very large 
values of d, where the first-order Bragg peak 
approaches the edge of the mirror reflection, two 
general types of multilayers can be distinguished. In the 
first (typified in the present work by Ni/Ti), there is a 
large (30% or more) reduction in the actual value of the 
critical wave vector for total reflection while, in the 
second (typified here by Fe/Ge), there is very little 
reduction (3% or so). The origin of these two very 
different types of behavior is explained. It is also shown 
that, within the dynamical theory of diffraction, the 
change in the position of the center of the Darwin 
plateau as d is varied obeys a universal scaling law - 
universal in the sense that it is the same for all layer 
materials and all orders of reflection. The width of the 
Darwin plateau also obeys a universal scaling law. It is 
verified that the values of the center and width of the 
Darwin plateau calculated from the optical matrix 
method for Ni/Ti and Fe/Ge multilayers obey these 
scaling laws for a wide range of parameters. 

1. Introduction 

The reflection of thermal neutrons from an ideal 
multilayer (i.e. a sequence of homogeneous layers 
separated by plane-parallel boundaries) is an exactly 
solvable problem in quantum mechanics. Within each 
layer, the wave function is a superposition of a 
transmitted wave and a reflected wave. The wave 
vectors are determined by the kinematics (energy and 
momentum conservation) and the amplitudes by match- 
ing the values of the wave function and its derivative at 
each boundary. The final result is that the reflectivity 
can be expressed in terms of a product of known 2 x 2 
matrices, one for each boundary. This 'optical-matrix' 
method (Heavens, 1965; Jacobsson, 1966; Born & 
Wolf, 1975; Lekner, 1987) therefore permits an exact 

numerical calculation of the reflectivity curve for any 
specified multilayer. For example, Fig. 1 shows the 
calculated reflectivity of a periodic Ni/Ti multilayer as 
a function of the normal component of the wave-vector 
transfer qz. The calculation is for 50 bilayers, each 
200A thick, in which the individual Ni and Ti layers 
have equal thickness. 

Although the optical-matrix method is exact, it has no 
interpretive power. It is simply an algorithm for 
generating the reflectivity curve of a specified multi- 
layer. It cannot tell us why this curve has the shape that 
it has or what its features mean physically. In Fig. 1, for 
example, why does the reflectivity consist of a series of 
almost equally spaced peaks? Why is the separation of 
these peaks approximately 2rr/d, where d is the bilayer 
thickness? Why is the separation not exactly 27r/d? Why 
is the m = 1 peak so broad? Why is the m = 2 peak so 
weak? What is the origin of the rapid oscillations in the 
wings of the peaks? To answer such questions, we need 
a theory, if only approximate, that highlights the 
underlying physics. 

A periodic multilayer is analogous to a one-dimen- 
sional crystal and anyone familiar with X-ray or neutron 
crystallography will immediately recognize that the 
peaks in Fig. 1 are due to Bragg reflection. The detailed 
structure of the Bragg peaks in a perfect crystal is 
described by the dynamical theory of diffraction, in 
which the wave function inside the crystal is represented 
by a coherent superposition of Bloch waves (Ewald, 
1917; von Laue, 1931; Zachariasen, 1945; Sears, 
1989). The success of the dynamical theory of 
diffraction lies in the existence of a small parameter 
in terms of which the wave vectors and amplitudes can 
be expanded. This parameter is defined as 

: (qo/qz) 2, (1) 

where q0 is the critical wave vector for total mirror 
reflection. Keeping only the leading terms in the above- 
mentioned expansions, one obtains a simple analytical 
formula for the reflectivity in terms of which questions 
such as those posed earlier can be answered. 

In general, q0 "" 0.01 ,~-1 and, for a crystal, d is 
somewhat smaller than the lattice constant so that 

'~ 10 -5 to 10 -6 for a first-order Bragg peak. As a 
result, the dynamical theory of diffraction for a perfect 
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crystal is essentially exact for all practical purposes. For 
a multilayer, on the other hand, d is typically one or two 
orders of magnitude larger than the lattice constant and 

_~ 0.01 to 1.0. In this case, the dynamical theory of 
diffraction can be expected to be valid only when the 
bilayers are very thin and to break down when they 
become sufficiently thick. 

In this present paper, we use exact reflectivity curves, 
calculated numerically from the optical-matrix method 
for various ideal multilayers, to test the dynamical 
theory of diffraction. We find, for example, that the 
theory is generally valid 'for values of d up to about 
100A. For somewhat larger values of d, where the 
theory begins to break down, the initial discrepancy is 
in the phase of the oscillations in the wings of the peaks. 
For very large values of d, where the first-order Bragg 
peak (labeled m = 1 in Fig. 1) approaches the edge of 
the mirror reflection ( m -  0), one can distinguish two 
general types of multilayers. In the first (typified in the 
present work by Ni/Ti), there is a large (30% or more) 
reduction in the actual value of the critical wave vector 
for total reflection while, in the second (typified here by 

Fe/Ge), there is very little reduction (3% or so). The 
origin of these two very different types of behavior is 
explained. 

The flat part of the m = 1 Bragg peak in Fig. 1 is 
generally called the Darwin plateau. We show that, 
within the dynamical theory of diffraction, the change in 
the position of the center of the Darwin plateau as d is 
varied obeys a universal scaling law - universal in the 
sense that it is the same for all layer materials and all 
values of m. The width of the Darwin plateau also obeys 
a universal scaling law. We verify that the values of the 
center and width of the Darwin plateau calculated from 
the optical-matrix method for Ni/Ti and Fe/Ge multi- 
layers obey these scaling laws for a wide range of d and 
m values. 

We begin in §2 with a brief derivation of the 
dynamical theory of diffraction for an ideal periodic 
multilayer. Although the theory is essentially the same 
as for a perfect crystal, it differs in the definitions of 
many of the quantities involved. Most of the mathema- 
tical details are put in Appendices at the end of the 
paper. In §3, we show that, in a first approximation, the 

. m  
> 

. i  

1 

n.- 

1 . 2  1 

1.0 

m = O  

0.8 

0.6 

0.4 

0.2 

0.0 
0.00 

1 0 1  

100 

10 -1 

lo-2 

~ 10.3 
¢r 

10 4 

10 "s 

10 -e 

r , l ', r " T r 
2r,./d 

I 

0.02 

m = l  

N i / T i  

N = 5 0  

d = 200 A 

m = 3  

4¢/d 

0.04 0.06 0.08 

6r,./d 

qz (A'I) 
(a) 

0.1o 

' I ' 1 ' I ' I ' 

q 
m = l  m = 3 ~  

m = O  m = 2  

- 

0.00 0.02 0.04 0.06 0.08 0.10 

qz (A~) 
(b) 

Fig. 1. Reflectivity of a periodic Ni/Ti multi- 
layer as a function of qz calculated exactly 
using the optical-matrix method and shown 
on (a) linear and (b) logarithmic scales. The 
dominant features are the mirror reflection 
(m = 0) and the first three Bragg peaks 
(m = 1,2, 3), which are separated by oscillat- 
ing wings. The positions of the reciprocal- 
lattice vectors 2Jrm/d are indicated by 
vertical lines in (a). 
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reflectivity of the mirror reflection peak is the same as 
Airy's formula for reflection from a single homoge- 
neous layer whose thickness is the same as the total 
thickness of the multilayer. In §4, we obtain the basic 
formula for the reflectivity of the Bragg peaks and 
discuss some of its general properties. Finally, in §5, we 
present a detailed numerical comparison of the main 
results from the dynamical theory of diffraction with 
the corresponding exact results for Ni/Ti and Fe/Ge 
multilayers calculated from the optical-matrix method. 

2. Dynamical diffraction in a periodic multilayer 

In previous discussions of the reflectivities of multilayer 
neutron monochromators, the validity of the dynamical 
theory of diffraction has always been taken for granted 
(Saxena & Schoenborn, 1975, 1977; Sears, 1983; 
Saxena, 1986). The authors have simply transcribed 
the standard formula for the reflectivity of a perfect 
crystal to the case of a periodic multilayer without 
verifying whether the theory is valid for the d values of 
interest. In fact, the bilayer thicknesses are typically in 
the range 30 to 300 A and it will be seen later that the 
dynamical theory of diffraction usually breaks down in 
the upper half of this range. It is therefore worthwhile to 
begin by driving the dynamical theory of diffraction for 
the explicit case of a periodic multilayer, with particular 
emphasis on the approximations that are made and their 
range of validity. Our treatment has been adapted from 
that given in the book by Sears (1989). 

2.1. Wave equation f o r  a periodic multilayer 

The coherent wave ~p(r), which describes the 
coherent elastic scattering of thermal neutrons in 
macroscopic media and, hence, all neutron-optical 
phenomena, satisfies a one-body wave equation 

{ ( - h Z / 2 m ) A  + V(r)}q~(r) -- E~p(r), (2) 

in which m is the neutron mass, E the incident-neutron 
energy and V(r) the optical potential that represents the 
effective interaction of the neutron with the system. To 
a good approximation, the optical potential is given by 
the equilibrium value of the Fermi pseudopotential, 

V(r) = (2rrh2/m)f(r) .  (3) 

Here, f ( r )  = p(r)b(r) is the bound coherent scattering- 
length density, in which p(r) is the average number of 
atoms per unit volume at the point r and b(r) the 
corresponding average bound coherent scattering length 
per atom. 

We consider the reflection of neutrons by an ideal 
multilayer consisting of N identical bilayers of thickness 
d. The z direction will be taken normal to the surface so 
that f ( r ) = f ( z ) ,  independent of x and y. Inside the 
multilayer, f ( z )  is a periodic function of z with period d 

and, hence, can be expanded as a Fourier series in this 
region. Ignoring the substrate, we can therefore put 

0, z < 0 ,  
f ( z )  = ~']~fm exp(-iKmZ),  0 < Z < D, (4) 

m 

0, z > D ,  

where D = Nd is the total thickness of the multilayer. 
The quantities Km are defined as 

K m -- 2zrm/d, m -- 0,-1-1, 4-2 . . . . .  (5) 

and are analogous to reciprocal-lattice vectors, while 
the coefficients fm are analogous to unit-cell structure 
factors. Explicit expressions for fm are given in 
Appendix A for some model bilayers. 

Since the scattering-length density depends only on z, 
the solution of the wave equation (2) is of the form 

ap(r) : exp[i(kxx + kyy)]x(z), (6) 

where k x and ky are constants. In other words, 
momentum is conserved in the x and y directions. 
Defining k 2 such that 

E = (~2/2m)(~ + ~ + ~) ,  (7) 

we then find that X(z) satisfies the one-dimensional wave 
equation 

{d2/dz 2 +~-4nf(z)}x(z)=O. (8) 

Let us choose coordinate axes such that the plane of 
scattering is the xz plane. Then, ky -- 0 and the incident 
and reflected wave vectors are given by 

k : (kx, ky, kz) = k(cos 0, 0, sin0), 
(9) 

k' = (kx, k~., -kz) = k(cos 0, 0, - sin 0), 

where 0 is the angle that the incident wave vector makes 
with the surface. The wave-vector transfer is therefore 
given by 

q = k - k ' = ( O , O ,  qz), (10) 

where 

qz = 2kz = 2k sin 0 = (4zr/2) sin 0 

and 2 - 2zr/k is the incident-neutron wavelength. 

(11) 

2.2. General solution o f  the wave equation 

With f ( z )  of the form (4), the required solution of (8) 
can be expressed as 

exp(ikzz + r exp(- ikzz ) ,  z < O, 
X(Z) : ~ A(z)exp(iKzz),  0 < z < D, (12) 

t exp(ikzz ), z > D. 

In the region z < 0, the wave function is a superposition 
of an incident wave, which is normalized to unit 
amplitude, and a reflected wave with relative amplitude 
r. For z > D, we have a transmitted wave with relative 
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amplitude t. In the interior of the multilayer, where 
0 < z < D, the wave function is a superposition of 
Bloch waves in which the sum runs over all allowed 
values of K z, which are determined by the wave 
equation as shown below. 

The reflectivity R is defined as the fraction of incident 
neutrons that are reflected by the multilayer and the 
transmissivity T as the fraction that are transmitted. 
These quantities are given by 

R = Irl 2, T -  Itl z. (13) 

To determine R and T, we must therefore solve the wave 
equation (8) for the interior wave function and then 
match it to the exterior solutions by requiring that X(z) 
and X'(z) be continuous at z = 0 and z = D. 

The Bloch-wave amplitude A(z)  is a periodic function 
of z with period d and, hence, can be expanded as a 
Fourier series 

A(z)  -- ~ A m e x p ( - i K m z  ). (14) 
m 

For each allowed value of K z, the interior wave function 
is then of the form 

X(z) = A ( z ) e x p ( i K z z )  = Y']~Amexp[i(K z - Km)z]. (15) 
m 

This expression satisfies the wave equation (8) if and 
only if 

DmA m : ~ ~--]~?m_m, A m , .  (16) 
m' 

Here, 

and 

O m = 1 - [(K z - Km)/kz] 2 (17) 

fm =fm/ fO,  (18) 

so that f0 -- 1. Also, 

= 4rrf0/~ -- (qo/qz) 2, (19) 

in which qz = 2kz  as before and 

qZ0 = 16nf 0. (20) 

We shall see in the next section that q0 is the critical 
wave vector for mirror reflection from the multi- 
layer. 

2.3.  Genera l  f o r m  o f  the reflectivity 

The fundamental assumption in the dynamical theory 
of diffraction is that ~ is a small parameter in terms of 
which expansions can be made. In what follows, a _~ b 
is to be interpreted as a = b[1 + O(~)], while a ~ b 
means that the relative difference between a and b is of 
order unity. 

For example, we shall see later that K z ~_ k z, which 
gives 

D m = 4Km(qz - K m ) / ~  + O(~). (21) 

Also, according to (16), 

DmAm -- O(~). (22) 

Thus, if qz "~ Km then 

D m = O ( ~ ) ,  A m : O(1), (23) 

while if qz ¢ Km then 

O m - -  0(1), A m = O(~). (24) 

Note that if qz = K m  exactly then it follows from (5) and 
(11) that 

m2 = 2d sin 0, (25) 

which is just Bragg's law. 
It is clear from the above discussion that the nature 

of the wave function depends critically on the value of 
qz relative to K m. The basic procedure in the 
dynamical theory of diffraction is to neglect all terms 
in the interior wave function (15) for which 
Am = O(~). In subsequent sections, we show that the 
reflectivity then consists of a series of distinct peaks 
when viewed as a function of qz: 

R -- ~ R m. (26) 
m 

Here, R m arises from Bragg reflection via K m and is 
appreciably different from zero only if qz ~ Km" 
The leading term R 0 arises from mirror reflection 
and is appreciably different from zero only at small 

qz. 

3. Mir ror  reflection 

3.1.  Ref lect iv i ty  

In Appendix B, it is shown that, when Bragg's law is 
not satisfied for any value of m ~= 0, the reflectivity of a 
multilayer is the same as for a single homogeneous layer 
of thickness D and scattering-length density f0 and can 
be expressed in the form 

Ro = Ro(xo, Y0), (27) 

where x o and Yo are dimensionless variables that 
characterize the wave-vector transfer and the thickness 
of the multilayer, respectively, 

-'Co = qz/qo, Yo = qoD/2 ,  (28) 

and qo is given by (20). Alternatively, 

Yo = JrN/No,  (29) 

where N is the number of bilayers and 
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No = 2Jr/qod. (30) 

In what follows, we shall neglect absorption by 
assuming that fo is real. We shall also assume that fo 
is positive, which it usually is in practice.  In this case, 
q0 and, hence, x 0 and Yo are also real positive quantities. 
Finally, dropping the subscripts on the variables,  

Ro(x, y ) =  12x 2 - 1 + 2ix(x  2 - 1) 1/2 cot[y(x 2 - 1) 1/2] -2, 

(31) 

and this is equivalent to Airy's formula (Born 8,5 Wolf, 
1975). Fig. 2 shows R0(x, y) as a function of x for three 
values of y. 
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Fig. 2. The functions Ro(x, y) and R(x, y) that characterize mirror reflection and Bragg reflection in the dynamical theory of diffraction, shown 
here as functions of x for three values of y. 
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3.2. Properties o f  the reflectivity 

It will be noted from the general expression (31) that 

Also, 

1, 
Ro(x ' y) __ y2/(y2 + 4), 

0, 

x - - 0 ,  
x = l ,  
x : ~ .  

(32) 

R o ( x , ~ ) = l ,  0 < x <  1. (33) 

It is evident from Fig. 2(c) that, for practical purposes, 
this latter relation is valid when y >> 7r and that 
R0(x, y) decreases rapidly to zero when x > 1. Since 
the boundary x -- 1 occurs when qz -- qo, it follows 
that q0 is the critical wave-vector transfer for total 
reflection from a thick multilayer. The quantity No in 
(29) is essentially the number of bilayers needed to 
saturate the reflectivity. In Fig. 1, for example, 
N o = 2.29 and Y0 -- 22rr so that the mirror reflection 
is well saturated. 

For a thin multilayer (y << Jr), (31) reduces to 

Ro(x ' y) -- (sinxy/2x2) 2, (34) 

which is the same as is found in the kinematical theory 
of diffraction (Sears, 1988). This result is shown by the 
dashed line in Fig. 2(a). Since the kinematical theory 
neglects multiple scattering, it is valid only if R o << 1. 
This condition is not well satisfied when x is very small 
(x < 0.6, say). 

It is instructive to compare (31) for reflection from a 
multilayer of finite thickness with Fresnel 's formula for 
reflection from a homogeneous medium of infinite 
thickness (Born & Wolf, 1975), 

Re(x)-  [[(x 2 -  1)m-x]/[(x 2 -  1) 1/2 +xl[ z. (35) 

This latter result is shown by the dashed line in Fig. 
2(c). It is clear from the wave function (69) that t h e  
oscillations in the tail of R0(x, y) above x = 1 are due 
to the interference of the wave reflected from the back 
face of the multilayer with the internal transmitted 
wave. 

4. Bragg reflection 

4.1. Reflectivity 

In Appendix C, it is shown that, when Bragg's law is 
satisfied for some value of m ~ 0, the reflectivity of a 
non-absorbing multilayer is of the form 

Rm = R(xm, Ym), (36) 

where xm and Ym are dimensionless variables that 
characterize the wave-vector transfer and the thickness 
of the multilayer, respectively, 

Xm = [ 2 K m ( q z  - Kin)  - q2ol/q2m, Ym --- q 2 m D / 4 K m "  (37) 

Here, q0 is given by (20) as before and 

qem = 16nlfml. (38) 

Alternatively, 

Ym = :rN/Nm, (39) 

where N is again the number of bilayers and 

Nm = 8rr2m/(qmd) 2. (40) 

Finally, dropping the subscripts on the variables, 

sin2[y(x z - 1) ~/2] 
-- . (41) 

R(x, y) x 2 - 1 + sin2[y(x 2 - 1) 1/2] 

Fig. 2 shows R(x, y) as a function of x for three values 
o fy .  

It will be noted that Rm depends on m only through the 
variables x m and Ym- The intrinsic shape of a Bragg peak 
is given by the function R(x, y), which is independent of 
m. In other words, all the Bragg peaks have the same 
shape. In the neighbourhood of the Bragg peak, the 
expansion parameter (19) becomes 

-- (qo/qz) 2 ~ (qo/Km) 2. (42) 

The dynamical theory of diffraction is valid only if 
<< 1, which requires that Km >> q0" 

4.2. Properties o f  the reflectivity 

It will be noted from the general expression (41) 
that 

tanh2 y, x = O, 
R ( x , y ) - -  y2/(y2 + 1), x - - + 1 ,  (43) 

O, x = -t-o<~. 

Also, 

R(x, c x ) ) = l ,  O < x  2 < 1. (44) 

It is evident from Fig. 2( f )  that, for practical 
purposes, this latter relation is valid when y >> rr and 
that R(x, y) decreases rapidly to zero when x 2 > 1. The 
region of total reflectivity is called the Darwin plateau 
(Darwin, 1914), and the quantity Nm in (39) is 
essentially the number of bilayers needed to saturate 
the reflectivity. For the m - -  1 Bragg peak in Fig. 1, 
for example, N~ = 10.85 and Yl- -4 .6zr  so that the 
Darwin plateau is well saturated. However, for the 
m = 3 Bragg peak, N 3 - -97 .7  and Y3--0.5rr  so that 
the peak is not saturated and there is no well defined 
Darwin plateau. 

For a thin multilayer (y << n), (41) reduces to 

R(x, y) -- [(sinxy)/x] 2, (45) 

which is the same as is found in the kinematical theory 
of diffraction (Sears, 1983). The term - (qo /qm)  2 in (37) 
for x m is absent in the kinematical theory and R m is 
symmetric about the Bragg position qz--Kin" In the 
dynamical theory, the effect of this term is that the 
Bragg peak is not centered at qz = Km (see Fig. 1), 
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although the shift is only appreciable at large y. The 
kinematical limit (45) is shown by the dashed line in 
Fig. 2(d). Since the kinematical theory neglects multiple 
scattering, it is valid only if R(x, y) << 1. This condition 
is not well satisfied when x is very small (x < 2, say) 
and the reduction in the intensity of the peak in Fig. 2(d) 
is referred to as extinction. 

4.3. Darwin plateau 

The boundaries of the Darwin plateau occur at 
x = +1,  where qz has the values 

am+ -- Km a t- (~o d= q2m)/2K m. (46) 

Hence, the center of the plateau is at 

Qm = l (Qm+ -+- Q,n-) =Km a t- C12o/2Km (47) 

and its width is given by 

AQm : Qm+ - a m -  : q2m/Km. (48)  

It is easily seen, with the help of (68), that Qmnz = K m 
to first order in ~. In other words, the center of the 
Darwin plateau occurs where the refracted wave-vector 
transfer equals the reciprocal-lattice vector. Thus, the 
shift of the center of the Bragg peak from the 
kinematical position Qm - K m  is due to the refraction 
of the wave function inside the multilayer. Such shifts 
have been observed in multilayer neutron monochro- 
mators (Ebisawa, Achiwa, Yamada, Akiyoshi & 
Okamoto, 1979; Gukasov et al., 1979). The analogous 
deviation from Bragg's law for crystals is well known 
and was first established by Darwin (1914). 

Note also that the minimum value of Q,,, is 21/2q0 and 
occurs at K m = qo/21/2. This result is, however, of 
purely academic interest since the dynamical theory of 
diffraction is only valid when ~ << 1, which, according 
to (42), means only when K m >> q0- 

The rapid oscillations in the wings of R(x, y) when 
y >> 7r arise from the interference of the 4- components 
in the wave function (95) and are referred to as 
Pendell6sung oscillations. If we average (41) over these 
oscillations, we get Ewald's formula (Ewald, 1917): 

R(x) : ~" 1, x 2 _< 1, (49) 1 - (1 - x - 2 )  1/2, X 2 > 1. 
k 

This latter result is shown by the dashed line in 
Fig. 2(f).  

5. Appl icat ion to N i /T i  and F e / G e  mult i layers  

We mentioned in §1 that the reflectivity of an ideal 
multilayer can be calculated exactly using the well 
known optical-matrix method. In this section, we 
compare the results of such calculations for periodic 
Ni/Ti and Fe/Ge multilayers with the corresponding 
results obtained from the dynamical theory of diffrac- 
tion. The optical-matrix method can be formulated in a 

Table 1. Properties of  selected layer materials 

p (~-3) b (fm) f(10-6 ,~-2) 

Ni 0.0914 10.30 9.42 
Ti 0.0567 -3 .44 - 1.95 
Fe 0.0849 9.45 8.02 
Ge 0.0441 8.19 3.61 

Table 2. Properties of two symmetric multilayers 

f0 Ifll 
(10-6 ,~-2) (10-6 ,~-2) q0 (,~-1) ql (k- l )  ql/qo 

Ni/Ti 3.73 3.62 0.0137 0.0135 0.985 
Fe/Ge 5.82 1.40 0.0171 0.0084 0.491 

number of equivalent ways. We have used an approach 
that is originally due to Abel, s (1948). A very readable 
account of this method can be found in Lekner (1987). 

The relevant properties of the layer materials are 
listed in Table 1. We use the bulk values for the number 
density p, ignoring the fact that in actual thin films the 
density can be as much as 10% smaller than the bulk 
values (Ebisawa et al., 1979). We also assume 
symmetric bilayers (see Appendix A) and the corre- 
sponding values of q0 and qm for m = 1 are given in 
Table 2. Note that q0 -~ q~ for Ni/Ti while q0 is a factor 
of two larger than ql for Fe/Ge. This will be seen later 
to lead to an important qualitative difference in the 
behavior of the reflectivity in thick multilayers. 

5.1. Reflectivity curves 

Fig. 3 shows the reflectivity curves for mirror 
refection in periodic Ni/Ti and Fe/Ge multilayers for 
three values of the bilayer thickness d. In all cases, the 
number of bilayers N was chosen large enough to 
saturate the reflectivity below the critical wave vector. 
The solid curves are exact results calculated using the 
optical-matrix method while the dashed curves are 
from dynamical diffraction theory (see §3). We see 
that the results are in excellent agreement in Ni/Ti for 
values of d up to about 50 A and in Fe/Ge up to about 
100 A,. For larger values of d, the initial discrepancy is 
in the phase of the oscillations in the tails of the 
reflectivity curves. 

Fig. 4 shows the corresponding results for the first- 
order Bragg reflection in these multilayers (see ~4). For 
both multilayers, there is excellent agreement for values 
o fd  up to about 100 A,. For larger values of d, the Bragg 
peaks obtained from dynamical diffraction theory are 
noticeably shifted to larger values of qz relative to those 
obtained from the exact calculations and there are also 
large discrepancies in the wings of the distributions. 
According to (42), 

~-- (qod/2rrm) 2 (50) 

and the dynamical theory of diffraction is valid only if 
<< 1. In general, this requires that d be sufficiently 

small and/or m sufficiently large. For the same values of 
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d and m, the parameter  ~ is larger for F e / G e  than for 
N i / T i  because q0 is larger (see Table 2). 

According to (60), the structure factor fm for a 
symmetr ic  bi layer  vanishes identically when m is even 
and the corresponding Bragg reflection is forbidden 

within the dynamical  theory of  diffraction. In fact, a 
weak m -- 2 reflection is present in the exact reflectivity 
curve for N i / T i  shown in Fig. 1. This  peak is seen to be 
highly asymmetr ic ,  in contrast  to those for the al lowed 
reflections m = 1 and m -- 3. The m -- 2 reflection is, in 
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Fig. 3. Mirror reflection in periodic Ni/Ti and Fe/Ge multilayers for three values of the bilayer thickness d. The solid curves are exact results 
calculated using the optical-matrix method and the dashed curves are from dynamical diffraction theory. 
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effect, due to the ~2 terms in (80) that are normally 
neglected in the dynamical theory of diffraction. These 
higher-order terms represent multiple-scattering pro- 
cesses in which, for example, the neutron is first Bragg 

reflected via K 3 and later via K_]. The total wave-vector 
transfer is then K3 + K _ I  = K 2 .  In this way, the 
otherwise forbidden m = 2 reflection becomes active. 
This is, of course, just the analog of the Renninger 
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Fig. 4. First-order Bragg peaks in periodic Ni/Ti and Fe/Ge multilayers for three values of the bilayer thickness d. The solid curves are exact 

results calculated using the optical-matrix method and the dashed curves are from dynamical diffraction theory. 
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effect in Bragg reflection in perfect crystals (Renninger, 
1937). 

5.2. Critical wave vectors 

Fig. 5 shows the critical wave vectors for a periodic 
Ni/Ti multilayer as functions of the bilayer thickness d. 
In particular, the dashed line represents q0, which is the 
critical wave vector for mirror reflection in dynamical 
diffraction theory, and the solid curves show the 
quantities Q,,,+, which mark the edges of the Darwin 
plateau for each allowed value of m. The circles are the 
corresponding exact positions of the total reflection 
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F ig .  5. C r i t i ca l  wave vectors q0 (dashed l ine)  and Q,,± (sol id  curves) 
for a periodic Ni/Ti multilayer given by dynamical diffraction 
theory and shown here as functions of the bilayer thickness d. The 
circles are the corresponding exact positions of the total reflection 
edges calculated using the optical-matrix method. 
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Fig. 6. Critical wave vectors qo (dashed line) and Q,,i (solid curves) 
for a periodic Fe/Ge multilayer given by dynamical diffraction 
theory and shown here as functions of the bilayer thickness d. The 
circles are the corresponding exact positions of the total reflection 
edges calculated using the optical-matrix method. 

edges that were read from reflectivity curves calculated 
for thick multilayers using the optical-matrix method. 
The most notable discrepancies are for m -  0 and 1 
when d > 200,~. The corresponding results for Fe/Ge 
are shown in Fig. 6. 

According to (46), the lower edge of the first-order 
Darwin plateau intersects the critical wave vector for 
mirror reflection (in other words, QI- = q0) when 

K 1 - - - -  2yr/d = ½[qo -t- (2q 2 - qg)l/2]. (51) 

Since K 1 is real, this requires that 

ql/qo >- 1/21/2 -- 0.7071. (52) 

This condition is satisfied for Ni/Ti, where 
ql/qo = 0.985 (see Table 2) and the lower edge of the 
Darwin p.lateau intersects the mirror reflection line at 
d - 465 A (see Fig. 5). It is seen from the open circles 
in Fig. 5 that, in reality, the mirror reflection edge is 
depressed as the Bragg peak approaches it so that the 
two never actually meet. This is illustrated in Fig. 7, 
which shows the reflectiv!ty of Ni/Ti as a function of qz 
calculated at d - - 4 5 0 A  using the optical-matrix 
method. For this value of d, the reciprocal-lattice 
vector 2Jr/d is almost equal to q0 and the mirror 
reflection edge is depressed by about 25 %. 

The condition (52) is not satisfied for Fe/Ge, where 
ql/qo = 0.491 (see Table 2), so that the Darwin plateau 
does not intersect the mirror reflection line (see Fig. 6). 
It is evident from the open circles in this figure that the 
critical wave vector for mirror reflection remains within 
3% of the value qo given by the dynamical theory of 
diffraction for all d. 
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Fig. 7. Reflectivity of a periodic Ni/Ti multilayer as a function of q: 
calculated exactly using the optical-matrix method. The dominant 
features are the mirror reflection (m = 0) and the first-order Bragg 
peak (m = 1). The vertical lines indicate the positions of the 
reciprocal-lattice vector 2rr/d and the small-d limit of the critical 
wave vector for mirror reflection q0. The actual critical wave vector 
for mirror reflection is depressed owing to the interaction with the 
Bragg peak at this large value of d (see text). 
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In general, it follows from the definitions (20) and 
(38) and expression (60) for the structure factor of a 
symmetric bilayer that the condition (52) is equivalent 
to 

[(fA--fB)/(fA +fB)l >-- Zr/4. (53) 

This condition is always satisfied if, as in Ni/Ti, the 
scattering-length densitiesfA and f  B are of opposite sign. 
If they have the same sign then (52) will be satisfied 
only if one is roughly an order of magnitude larger than 
the other, which is not the case for Fe/Ge. 

Finally, it will be noted from Fig. 7 that the small gap 
between the mirror reflection (m = 0) and the Bragg 
peak (m = 1) can be filled in by introducing a suitable 
gradient in the bilayer thickness d. One then obtains a 
so-called supermirror (Mezei, 1976; Mezei & Dagleish, 
1977; Hayter & Mook, 1989). 

5.3. Scaling laws 

The relation (47) for the position of the center of the 
Darwin plateau can be expressed equivalently as 

Qm/qo = K,,/qo + qo/2Km, (54) 

which demonstrates that Q,,/qo is a universal function 
of Km/qo. This scaling law is shown by the solid curve 
in Fig. 8. The results are displayed on a log-log scale to 
enhance the discrepancies at small K m. The dashed line 
is the corresponding result (Qm =Km) from the 
kinematical theory of diffraction. The symbols in 

Fig. 8 show the values calculated from the optical- 
matrix method for Ni/Ti and Fe/Ge multilayers for 
various values of d and m. These exact values are in 
good agreement with (54) for K m > 2q0, which means 

< 0.25. When K,, fails below this value, the expansion 
parameter ~ is no longer small in comparison with unity 
and the dynamical theory of diffraction begins to break 
down. 

The relation (48) for the width of the Darwin plateau 
can be expressed equivalently as 

A a m / q  m =qm/Km, (55) 

which demonstrates that Aam/q m is a universal function 
of gm/qm. This scaling law is shown, again on a log-log 
scale, by the solid line in Fig. 9. The symbols show the 
values calculated from the optical-matrix method for 
Ni/Ti and Fe/Ge multilayers for various values of d and 
m. These exact values are in good agreement with (55) 
for K m > lOqm, say. When K m falls below this value, 
the Darwin plateau is slightly narrower than is predicted 
by the dynamical theory of diffraction. 

APPENDIX A 
Structure factors 

In this Appendix, we derive explicit expressions for the 
structure factors for some model bilayers (Sears, 1983). 
In general, 
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d 

fm = ( l /d )  f e x p ( i K m z ) f ( z ) d z .  (56) 
0 

Note that f - m - - f r o  for a non-absorbing bilayer where 
f ( z )  is real. This is the analog of Friedel's law (Friedel, 
1913). Note too thatfo is the average value off(z) ,  

d 

fo = ( l /d )  f f ( z ) d z .  (57) 
0 

For a general bilayer, in which the layers are labeled 
A and B, 

o < z < s .  

f ( z )  = s d  < z < d ,  
(58) 

k J D  

where fA--Paba ,  f B - - P s b n  and s is the relative 
thickness of the A layer. This then gives 

SfA -q- (1 - s ) f  n, m = O, 
f "  = (fa -- fs){[exp(2sm~ri)  -- 1]/2mzri}, m ~ O. 

(59) 

If the bilayer is symmetric in the sense that the A and B 
layers are of equal thickness, then s -- 1/2 and 

½ (fA + fB), m = 0 ,  
f m =  (i /mrr)(fA - - f s ) ,  m = +1, - t -3  . . . . .  

0, m = -t-2,-t-4 . . . . .  (60) 

Thus, the even-order reflections are all forbidden for a 
symmetric bilayer (Schoenbom, Caspar & Kammerer, 
1974; Saxena & Schoenborn, 1975). 

The dynamical theory of diffraction does not require 
an ideal multilayer (i .e.  a sequence of homogeneous 
layers separated by plane-parallel boundaries). It is only 
necessary that the scattering-length density f ( z )  be a 
periodic function of z. Thus, the dynamical theory can 
easily allow for the fact that, in reality, the boundaries 
between the layers are always smoothed out to some 
extent by diffusion and interlayer roughness. In the 
extreme case where the effective scattering-length 
density varies sinusoidally with z, we have 

f ( z )  = ½[(fA + f s )  + (fA - f s ) s i n ( Z r c z / d ) ]  (61) 

and 

+f.), 
fm = +(i/4)(fa - f n ) ,  

0, 

m = 0 ,  

m = + l ,  
m -- -t-2, -t-3 . . . . .  

(62) 

In this case, all the higher-order reflections are 
forbidden. 

APPENDIX B 
Mirro r  reflection 

In this Appendix, we derive the basic formula (31) 
for mirror reflection from a multilayer. We begin by 
supposing that Bragg's law is not satisfied, so that 

qz ¢ Km for any m ¢ 0. It then follows from §2.3 
that 

O(se), m - -  O, (63) 
D m =  0(1), m¢-O 

and, hence, that 

0(11, m = 0 ,  (64) 
A,,,= O(~), m e 0 .  

For each allowed value of K z, the interior wave function 
(15) is then given by 

X(z) = Ao exp(iKzz)  + O(~). (65) 

The allowed values of K z are determined from (16), 
which reduces for m -- 0 to 

BoA0 = ~A 0 + o(~Z). (66) 

To lowest order in ~ this gives 

D O = 1 - (Kz/kz) 2 = ~. (67) 

The allowed wave vectors ai,: therefore :kK z, where 

K z / k  z = n z = (1 - ¢)1/2. (68) 

The quantity n z is similar to an index of refraction. 
To lowest order in ~, the complete interior wave 

function is therefore of the form 

X(z) = Ao exp(iKzz)  + A'o e x p ( - i K z z ) ,  (69) 

in which the first term is the transmitted wave and the 
second term the wave reflected from the back face of the 
multilayer. Thus, when Bragg's law is not satisfied, the 
interior wave function in a multilayer is the same as in a 
single homogeneous layer of thickness D and scattering- 
length density f0. 

It follows from (12) and (69) that the requirement that 
X(z) and X'(z) be continuous at z -- 0 and z = D leads to 
four linear equations that can be solved for the 
amplitudes A o, A~, r and t. In particular, we find that 
the amplitude of the exterior reflected wave is given by 
Airy's formula (Born & Wolf, 1975): 

c~[1 - exp(2i~0)] 
r -- - 1 - o~ 2 exp(2i<p) ' (70) 

in which 

a = (n z - 1) / (n  z + 1) (71) 

and 

q9 = qznzD/2.  (72) 

The result (70) can be expressed equivalently as 

2 
1 - n z 

r = 1 + nZz + 2in z cot <p (73) 

It is convenient to introduce the dimensionless 
variables 
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x = qz/qo, Y = CloD~ 2, ( 7 4 )  

in which case 

r = {2x 2 - 1 + 2ix(x  2 - 1) 1/2 cot[y(x z - 1)1/2]} -1 (75) 

and the reflectivity is then given according to (13) by 

Ro(x, y ) = 2x  2 - 1 + 2 ix(x  2 -  1)1/2 c o t [y (x2 -  1)1/211-2, 

(76) 

which is the desired result (31)• 

A P P E N D I X  C 
Bragg reflection 

In this Appendix, we derive the basic formula (41) for 
Bragg reflection from a multilayer. We begin by 
supposing that Bragg's law is satisfied in the sense 
that qz ~- Km for some value of m 76 0. It then follows 
from §2.3 that 

(O(~) ,  m' = 0, m, (77) 
Din, = O(1), otherwise 

and, hence, that 

O(1), m' = 0, m, (78) 
Am• = O(~), otherwise. 

For each allowed value of K z, the interior wave function 
(15) is then given by 

g(z) = ao exp(iKzz)  + a,,, exp[ i (K z - K,,,)z] + 0(~) .  

(79) 

The amplitudes are determined from equations (16), 
which now become 

DoA o -- ~( foAo + )-mA,,,) + O(~2), 
( 8 0 )  

D,,A m -- s~(./~,,,Ao +J~oAm) + O(~2). 

Recalling that )~o- l, and keeping only the leading 
terms in ~, we get 

(D O - ~)A 0 - ~)~_,~1 m = 0, 
(81) 

-~?mAo + (nm -- ~)A m = O. 

These homogeneous linear equations have a solution 
only if the determinant of the coefficients vanishes, 

2" ^ 
( D o - ~ ) ( D m - ~ ) = ~ f m f _ m ,  (82) 

and this relation then determines the allowed values of 
K z. The solution of the equations (81) is then given by 

Am Do - ~ ~.f,, (83) 
I x  - -  .," 

Ao ~f-m Dr. - 

Again, keeping only the leading terms in ~, the 
interior wave function (79) now becomes 

X(z) = Aotexp(iKzz)  + X exp(-iK~z)], (84) 

in which 

K~ =Km - g~. (85) 

Thus, for each allowed value of K z, the interior wave 
function is the sum of a transmitted wave (with wave 
vector Kz) and a Bragg-reflected wave (with wave 
vector -K~). 

Let us write the relations (17) in the form 

D O = 1 - (Kz/kz)  2 = ~p, 

so that 

Dr,, = 1 - ( K j k z )  2 = ~p', 
(86) 

Kz /k  z = n z = (1 - ~p)~/2 
( 8 7 )  

t 
K~/k  z = n z = (1 - ~p,)1/2 

Then, (82) becomes 

( p -  1)(p' - 1 ) =  ~, (88) 

where 

fl = L j ~ m  . (89) 

Also, (85) shows that, to first order in ~, 

p + p'  -- (2/~)(2 - Km/kz) = 2c~. (90) 

Hence, (88) becomes a quadratic equation in p, 

( p -  1 ) ( 2 c t - p -  1 ) =  fl, (91) 

with roots 

p+ = ct + [(a - 1) 2 - ~ ] 1 / 2 .  (92) 

The indices of refraction n z and n' z are therefore both 
double valued and the complete interior wave function 
becomes 

X(z) - A+[exp(iKz+z) + X+ exp(- iK~+z)]  

+ A_[exp ( iK  z_z) + X_ exp( - iK~_z)] ,  (93) 

in which, to first order in ~, 

Kz± --kz(1 - ~p+/2) ,  

K~± = Km - Kz~:, (94) 

X ±  --" ( p +  - -  1 ) L  m. 

The physical content of the wave function (93) 
becomes clearer when the terms are regrouped as 

X(z) = [,4+ exp(iKz+z) + A exp(iKz_Z)] 

+ [A+X+ exp( - iK~+z)  + A _ X _  exp( - iK£_z)] .  

(95) 

Then the first two terms represent the interior 
transmitted wave, which, since n z is double valued, 
have slightly different wave vectors Kz±. The final two 
terms represent the interior Bragg-reflected wave, 
which, since n' z is double valued, have slightly different 
wave vectors -Kz±. The wave function (95) neglects 
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mirror reflection from the faces of the multilayer. This 
is. justified by the fact that, when qz ~-Km, the 
amplitudes of the mirror-reflected waves are of order 

and hence of the same order as the other terms in X(z) 
that have already been neglected. Thus, mirror reflec- 
tion must also be neglected for consistency. 

The amplitudes of the waves are determined by 
matching the transmitted and Bragg-reflected compo- 
nents of the interior wave function (95) to the 
corresponding components in the exterior wave function 
(12) at z -- 0 and z = D. This gives 

1 = A +  + A _ ,  t = A + Y + + A _ Y _ ,  
r = A+X+ + A_X_, 0 = A+X+ Y+ + A_X_ Y_, 

in which 

Y+ = exp(-i~p+kzD/2 ). 

Hence, 

- X  Y 
A+ 

=X+Y+ - X  Y 

A_ = X+Y+ 
X+Y+ - X  Y ' 

(96) 

(97) 

x + x _ ( r +  - Y_) 
r - -  

x + v + - x  v 
(98) 

Y+ Y (X+ - x_) 
t =  

x + r + - x  r 

The reflectivity and transmissivity are, in general, 
given by (13). In the case of zero absorption, 
where f_,, =f,,] and /3 = Ifml 2, we find after a little 
algebra that 

R + T = 1, (99) 

as it should for neutron conservation. The reflectivity is 
found to be of the form (Ewald, 1917) 

sin2[y(x 2 -- 1) 1/2] 

R(x,y) x 2 - 1 + sinE[y(x 2 - 1) 1/2] (100) 

in which the dimensionless variables x and y are now 
defined such that 

x 2 = (a - 1)2//3, y2 =/3(~kzD/2)2. (101) 

The signs o f x  and y are arbitrary since R(x, y) is an even 
function of these variables. It follows from (89) and (90) 
that 

x = [2Km(qz - Kin) - -  q~o]/q2m , y = q2mD/4K m, (102) 

where q0 is given by (20) and 

q2m = 16nlfml. (103) 

Expression (100) for the reflectivity is the desired result 
(41). 

References 

Abel, s, F. (1948). Ann. Phys. (Paris), 3, 504-520. 
Born, M. & Wolf, E. (1975). Principles of Optics, 5th ed. 

Oxford: Pergamon. 
Darwin, C. G. (1914). Philos. Mag. 27, 315-333, 675-690. 
Ebisawa, T., Achiwa, N., Yamada, S., Akiyoshi, T. & 

Okamoto, S. (1979). J. Nucl. Sci. Tech. 16, 647-659. 
Ewald, P. P. (1917). Ann. Phys. (Leipzig), 54, 519-556, 

557-597. 
Friedel, G. (1913). C. R. Acad. Sci. 157, 1533-1536. 
Gukasov, A. G., Deriglazov, V. V., Kezerashvilli, V. Ya., 

Krutov, G. A., Kudryashov, V. A., Peskov, B. G., 
Syromyatnikov, V. G., Trunov, V. A., Kharchenkov, 
V. P. & Shchebetov, A. F. (1979). Sov. Phys. JETP, 50, 
862-865. 

Hayter, J. B. & Mook, H. A. (1989). J. Appl. Cryst. 22, 
35-41. 

Heavens, O. S. (1965). Optical Properties of Thin Solid Films. 
New York: Dover. 

Jacobsson, R. (1966). Prog. Optics, 5, 247-286. 
Laue, M. von (1931). Ergeb. Exakten Naturwiss. 10, 

133-158. 
Lekner, J. (1987). Theory of Reflection of Electromagnetic 

and Particle Waves. Dordrecht: Nijhoff-Kluwer. 
Mezei, F. (1976). Commun. Phys. 1, 81-85. 
Mezei, F. & Dagleish, P. A. (1977). Commun. Phys. 2, 

41-43. 
Renninger, M. (1937). Z. Phys. 106, 141-176. 
Saxena, A. M. (1986). J. Appl. Cryst. 19, 123-130. 
Saxena, A. M. & Schoenborn, B. P. (1975). Neutron 

Scattering for the Analysis of Biological Structures, edited 
by B. P. Schoenborn. Report BNL 50453, Chapter VII, 
pp. 30-47. Brookhaven National Laboratory, USA. 

Saxena, A. M. & Schoenborn, B. P. (1977). Acta Cryst. A33, 
805-813. 

Schoenborn, B. P., Caspar, D. L. D. & Kammerer, O. F. 
(1974). J. Appl. Cryst. 7, 508-510. 

Sears, V. F. (1983). Acta Cryst. A39, 601-608. 
Sears, V. F. (1988). Thin-Film Neutron Optical Devices, 

edited by C. F. Majkrzak. SPIE Proc. 983, 193-198. 
Sears, V. F. (1989). Neutron Optics. New York: Oxford 

University Press. 
Zachariasen, W. H. (1945). Theory of X-ray Diffraction in 

Crystals. New York: Wiley. 


